Oxford A Level Sciences
AQA Chemistry

23 The transition metals
Practice questions

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Marks \& Guidance \\
\hline 1 (a) \& \begin{tabular}{l}
\[
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{10}
\] \\
d-sub-shell / shell / orbitals / sub-level full (or not partially full)
\end{tabular} \& 1
1 \& \begin{tabular}{l}
allow [He] \(2 \mathrm{~s}^{2}\), or \([\mathrm{Ne}] 3 \mathrm{~s}^{2}\), or \([\mathrm{Ar}] 3 \mathrm{~d}^{10}\) \\
can only score M2 if \(\mathrm{d}^{10}\) in M 1 correct \\
allow 'full d-orbital' if \(\mathrm{d}^{10}\) in M1 do not allow d-block
\end{tabular} \\
\hline 1 (b) \& \begin{tabular}{l}
atom or ion or transition metal bonded to / surrounded by one or more ligands \\
by co-ordinate / dative (covalent) bonds / donation of an electron pair
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
Allow Lewis base instead of ligand \\
can only score M2 if M1 correct
\end{tabular} \\
\hline 1 (c) \& \begin{tabular}{l}
\(\mathrm{H}_{2}\) / hydrogen \\
no lone / spare / non-bonded pair of electrons
\end{tabular} \& \[
1
\]
\[
1
\] \& \begin{tabular}{l}
do not allow H \\
only score M2 if M1 correct or give ' H ' in M1
\end{tabular} \\
\hline 1 (d) (i) \& +2 OR 2+ OR Pd \({ }^{2+}\) OR \| OR +\| OR \|+ OR two OR two plus \& 1 \& \\
\hline 1 (d) (ii) \& \begin{tabular}{l}
Tetrahedral \\
square planar
\end{tabular} \& 1
1 \& \begin{tabular}{l}
these shapes can be in any order \\
allow phonetic spelling, e.g., tetrahydral
\end{tabular} \\
\hline 2 (a) (i) \& \begin{tabular}{l}
absorbs (certain frequencies of) (white) light / photons \\
d-electrons excited / promoted \\
the colour observed is the light not absorbed / light reflected / light transmitted
\end{tabular} \& 1
1

1

1 \& | not absorbs white / u.v. light |
| :--- |
| or d-electrons move between levels / orbitals d-electrons can be implied elsewhere in answer |
| allow blue light transmitted penalise emission of light in M3 | \\

\hline
\end{tabular}

AQA Chemistry

\begin{tabular}{|c|c|c|c|}
\hline 2 (a) (ii) \& \begin{tabular}{l}
\(E\) is the energy gained by the (excited) electrons (of \(\mathrm{Cu}^{2+}\)) \\
\(h\) (Planck's) constant \\
v frequency of light (absorbed by \(\mathrm{Cu}^{2+}(\mathrm{aq})\))
\end{tabular} \& 1

1

1 \& | allow: |
| :--- |
| - energy difference between orbitals / subshells |
| - energy of photon / light absorbed |
| - change in energy of the electrons |
| - energy lost by excited electrons |
| - energy of photon / light emitted |
| do not allow wavelength |
| If energy lost / photon lost / light emitted in M1 do not penalised light emitted | \\

\hline 2 (a) (iii) \& | $\left[\mathrm{Cu}(\mathrm{H} 2 \mathrm{O})_{6}\right]^{2+}+4 \mathrm{Cl}^{-} \rightarrow\left[\mathrm{CuCl}_{4}\right]^{2-}+6 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| Tetrahedral |
| $\mathrm{Cl}^{-} / \mathrm{Cl} /$ chlorine too big (to fit more than 4 round Cu) | \& 1

1

1 \& | note that $\left[\mathrm{CuCl}_{4}\right]^{2-}$ is incorrect penalise charges shown separately on the ligand and overall penalise HCl |
| :--- |
| allow |
| water smaller than Cl^{-} explanation that change in shape is due to change in co-ordination number | \\

\hline 2 (b) \& | |
| :--- |
| lone pair(s) on $\mathrm{O}^{-} / \mathrm{O}$ | \& 1

1 \& | allow: |
| :--- |
| - ion drawn with any bond angles |
| - ion in square brackets with overall / 2- charge shown outside the brackets |
| - ion with delocalised $\mathrm{O}=\mathrm{C}-\mathrm{O}$ bonds in carboxylate group(s) |
| allow position of lone pair(s) shown on O in the diagram even if the diagram is incorrect. | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 2 (c) (i) \& $$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}+2 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{2-}+} \\
& \text { product correct } \\
& \text { equation balanced } \\
& 6 \\
& \\
& \\
& \text { octahedral }
\end{aligned}
$$ \& 1
1
1

1 \& | note can only score M3 and M4 if M1 awarded or if complex in equation has 2 waters and 2 ethanedioates |
| :--- |
| If this condition is satisfied the complex can have the wrong charge(s) to allow access to M3 and M4 but not M1 | \\

\hline 2 (c) (ii) \& \& 1

1 \& | ignore charges |
| :--- |
| diagram must show both ethanedioates with correct bonding ignore water |
| allow 180° |
| mark bond angle independently but penalise if angle incorrectly labelled / indicated on diagram | \\

\hline 3 (a) \& | A ligand is a species which can donate a pair of electrons to a metal ion. |
| :--- |
| A co-ordinate bond is a covalent bond in which both electrons are donated by one atom. | \& 3 \& \\

\hline 3 (b) (i) \& $$
\begin{aligned}
& \text { e.g. }\left[\mathrm{Co(H}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \\
& \text { pink }
\end{aligned}
$$ \& 8 \& one mark is for the two correct complex ions and the other for a balanced equation one mark is given for each of the colours of the complex ions \\

\hline 3 (b) (ii) \& | $\begin{aligned} \text { e.g., }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} & +3 \mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \\ & \rightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{3}\right]^{2+}+6 \mathrm{NH}_{3} \end{aligned}$ |
| :--- |
| More molecules and/or ions formed. Increase in entropy because the reaction involves an increase in the number of molecules and ions. | \& \& one mark is for the two correct complex ions and the other for a balanced equation \\

\hline
\end{tabular}

